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STABILITY IN TIME-VARYING ECOSYSTEMS*

DaxterL B. BoTkKINt AND MATTHEW J. SOBEL

School of Forestry and Environmental Studies, Yale University;
and School of Organization and Management, Yale University

Recently, many articles and books, both popular and scientific, have dis-
cussed perturbations and other disturbances of natural ecosystems. Many of
these discussions are predicated on concepts of stability. However, explicit
analyses of stability generally occur in contexts of specific mathematical models,
and the specificity of these models may obscure the ecological significance of
the definition of stability employed. As Holling (1974) has said: “‘Our traditions
of analysis in theoretical and empirical ecology have been largely irherited
from developments in classical physics and its applied variants. . . . It is
similarly important, if a quantity fluctuates, to know its amplitude and period
of fluctuation. But this orientation may simply reflect an analytic approach
developed in one area because it was useful and then transferred to another
where it may not be.”

In the anecdotal literature, the concept of stability is often implicit and
vague. Where defined explicitly, the concept is borrowed from, or equivalent to,
the classical mechanics definition of a system that will tend to return to its
equilibrium state, at rest, after being perturbed; we label this property static
stability.! For example, the International Biological Program Grassland Biome
“Glossary of Systems Ecology Terms” (Woodmansee 1974) defines a stable
system as ‘. . . one that tends to return to initial conditions after being dis-
turbed. It may overshoot and oscillate (like a simple pendulum that is set in
motion), but the disturbances decline and die out.” Equivalent definitions of
stability occur in modern ecology texts such as Krebs (1972), Odum (1971),
McNaughton and Wolf (1973), and Smith (1974). May (1973) presents an
extensive account of the elegant mathematical analysis of ecosystem static
stability. Static stability underlies the definitions of stability found in standard
treatises on systems theory, e.g., Freeman (1964), Lee and Marcus (1967),
Schwartz and Friedland (1965), and Zadeh and Desoer (1963).

* This research is a contribution of the Hubbard Brook Ecosystem Study and the
Ecosystem Center, Marine Biological Laboratory, Woods Hole, Massachusetts. It was
partially supported by National Science Foundation grants GK-38121 and GB-40715.

+ Present address: Ecosystems Center, Marine Biological Laboratory, Woods Hole,
Massachusetts 02543.

1 We shall leave mathematical fine points aside and not distinguish between ‘‘stable,”
“asymptotically stable,” and “globally asymptotically stable” as these terms are defined
in systems theory.
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Static stability is used in recent ecological literature. In a study of isotope
kinetics in a laboratory ‘“‘microcosm,” Patten and Witkamp (1967) define

relative stability as
- B
Ax; LA

where § is relative stability, x;(eq) is the equilibrium amount of material in a
compartment, Az; is the perturbation in the same units as the equilibrium
amount, J,¢ is the duration of the perturbation, and At is the time for a com-
partment to return to the original equilibrium.

In a study of the relative stability of mineral cycles in forest ecosystems,
Jordan et al. (1972) use an equivalent definition and state: “. . . A stable
system returns monotonically or with decreasing oscillations toward the steady
state. An unstable system continues to depart from steady state, either mono-
tonically or with increasing oscillations. An unstable but bounded system
either assumes a new steady-state level or oscillates, but the amplitude of the
oscillations remain constant. Mineral cycles in ecosystems which remain intact
are all monotonically stable.”

The concept of static stability is implicit in the classical notions of succession
and climax. For example, in Cooper’s (1913) classic study of the climax forests of
Isle Royale National Park, he states that the boreal forest is . . . the climax
forest of that portion of the northeastern conifer region under consideration;
in other words, that upon Isle Royale it is the final and permanent vegetation
stage, toward the establishment of which all other plant societies are successive
steps. . . . Both observational and experimental studies have shown that the
balsam-birch—white spruce forest, in spite of appearances to the contrary, is,
taken as a whole, in equilibrium ; that no changes of a successional nature are
taking place within it.”

OBJECTIVES

The objectives of this paper are to suggest that the concept of stability just
described may be inappropriate for the analysis of ecosystems, and to propose
some notions of stability that are motivated by the ecological connotations of
the phrase “stability” and by the history and dynamics of real ecosystems.
Each notion is presented loosely in verbal terms and then translated into a
plausible mathematical definition.

Those familiar with the mathematical study of stochastic processes will
recognize that the definitions presented here are not new in concept. We merely
state known mathematical notions, heretofore not applied in ecology, in ways
that enhance understanding of the stability of real ecosystems. These notions,
therefore, are pertinent to ecosystem management. In our discussion of these
concepts, we show in a preliminary way how they might be applied in ecology.

The evaluation of alternative definitions of stability is more significant than
a mere mathematical pastime. Frequent calls to arms based on claimed links
between stability and species diversity are bugled to the scientific and lay



STABILITY IN TIME-VARYING ECOSYSTEMS 627

publics. The recent article by Holdren and Ehrlich (1974) is a good example.
It is likely that public policy has been or (optimistically) shortly will be in-
fluenced by definitions of stability in vogue at the time.

1. TRAIL GUIDE

This paper is lengthy, but we hope that a trail guide will ease the reader’s
efforts to travel through our eight sections. Section 2 concerns the role of fire
in the Boundary Waters Canoe Area in Minnesota. This context is a useful
vehicle to introduce the discussion of stability of structural properties of
ecosystems. We turn in Section 3 to formal definitions of stability in deter-
ministic ecosystem models. The principal stability notions discussed there are
persistence and recurrence. These notions are given formal definitions for
stochastic ecosystem models in Section 4, and are applied to the Boundary
Waters Canoe Area in Section 5. In Section 6, we turn to applications to models
of predator-prey interaction. We find that the recurrence and persistence
notions are again useful, and we advance new reasons to deny the empirical
importance of the Lotka-Volterra equations. Section 7 discusses applications
to functional properties of ecosystems as exemplified by the history of Berry
Pond in Massachusetts. The principal conclusions drawn from our applications
in Sections 5, 6, and 7 are summarized in Section 8.

2. FIRE IN THE BOUNDARY WATERS CANOE AREA

We examined reports of the histories of several real ecosystems and concluded
that static stability is an inappropriate concept with which to analyze per-
turbations of these systems. A good example is provided by Heinselman’s
(1973) history of the forests of the Boundary Waters Canoe Area (BWCA) and
the role of fire in these forests. Heinselman investigated forest history by ex-
amining pollen, charcoal, and other deposits in lake sediments, by examining
historical records, and by directly observing evidence of fire and the current
state of forested areas.

Pollen deposits from Lake of the Clouds in the BWCA (Craig 1972; Swain
1972) indicate that the last glaciation was followed by a tundra period, then
by a boreal spruce forest which was replaced about 9,200 yr ago by a forest
dominated by jack pine and red pine. Subsequently, paper birch and alder
were added about 8,300 yr ago, then white pine entered about 7,000 yr ago,
and afterward there was a return to spruce, jack pine, and white pine. Thus,
on a geological time scale, the classical ecological concept of a climax forest—
i.e., one that would dominate the landscape and reproduce itself through time
if man would not interfere—does not fit the real history of the BWCA.

Classically, ecologists have avoided this problem by talking about climatic
climaxes, or communities that dominate the landscape as long as the climate is
constant. From this point of view one might argue that changes in forest
composition are slow and that an equilibrium state might be obtained in periods
of less than 1,000 yr. To refute this argument, we observe that it is likely that
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the effects of initial conditions or catastrophes would influence an ecosystem
for at least a few generations. Because the lifetimes of some of the tree species
in northern hardwoods and coniferous forests are on the order of 400 yr, an
equilibrium state in the BWCA seems inappropriate for intervals of centuries.
Shorter periods involve local successional events for which it is also unreasonable
to assume that the forest reaches an equilibrium. Thus the concept of an equi-
librium state for an unmanipulated or “natural” forest is contradicted by
history, and a definition of stability which involves a return to an equilibrium
is not appropriate for the BWCA. '

Terrestrial ecologists will recognize that this history is not unique. Such
histories lead us to argue that static stability is a formalization having at best
little ecological value. Evolutionary progression and adaptation provide
another inducement to reject it.

Other writers also have rejected this concept of stability. Watt (1969)
discusses histories of several phenomena which lead him to reject, implicitly,
the notion of static stability. Margalef (1969) and Lewontin (1969) also attempt
to confront the inadequacy of this notion.

How can one deal with the response of ecosystems to perturbations if one
cannot talk about an equilibrium state? What does it mean to “‘preserve” a
natural ecosystem, to investigate the effects of ‘“‘perturbations,” or to limit
man’s influences which might be “destructive’” or “destabilizing” ?

A good case in point is the occurrence of fire in the BWCA. It has been
common in the twentieth century to believe that fire is an exogenous event
imposed on a forest and that a forest would become an equilibrium climax
community if fire were suppressed. Heinselman’s (1973) paper contradicts this
view. He states that fire in the BWCA has been a periodic disturbance, with an
estimated period of 100 yr to burn 1 million acres. He cites evidence of fire
occurring there 38,000 yr ago.

Not only has fire been a recurring event, but its frequency has varied. Fire
apparently became less frequent 3,000-1,200 yr ago, with an accompanying
increase in northern white cedar and a decrease in pine. Fires were more
common from A.D. 1000 to A.D. 1400, then less common until about A.D. 1670.

The existence of species such as jack pine, which have evolved serotinous
cones during the last 20 million yr, further supports the argument that fire has
been a persistent factor for a long time.

Heinselman observes that the intentional suppression of fire in the present
century has produced two trends. First, “dry matter accumulations, spruce
budworm outbreaks, blowdowns and other interactions related to the time
since fire increase the probability that old stands will burn.” The large amounts
of fuel available may lead to catastrophes such as destruction of the current
vegetation patterns and thus the elimination of species which are adapted to
the occurrence of moderate fires with a frequency on the order of once in 20 yr.
The species in the old stands promote the severity of fire, when it occurs, by
producing readily burnable litter. Too-frequent fires kill the regenerating plants
(the saplings and seedlings) before they reach a reproductive stage; too-
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infrequent fires may be so severe that they destroy the root system and all the
mature seed trees and disrupt the soil.

The second current trend due to suppression of fire is the gradual replacement
of currently dominant species (jack and red pine) by a fir-spruce-cedar-birch
forest.

What does it mean to “‘stabilize’” or “preserve” a forest when the natural
undisturbed forest is changing through time, and when fire appears to be an
intrinsic event ?

3. NOTIONS OF STABILITY IN DETERMINISTIC MODELS

For expository convenience, our discussion of formal stability begins with
deterministic ecosystem models. Time is an explicit parameter in the models
we consider because time affects every ecosystem, if only to age its members.

For two reasons, we begin with models of ecosystems that are undisturbed
by “‘external’” influences. First, as previously discussed, a definition of stability
has little pragmatic value if it invokes a return to equilibrium. Second, an
undisturbed system that lacks a plausible kind of stability will not acquire
stability when it experiences an external shock. It is conceivable, however,
that a system, stable in some sense when undisturbed, might become unstable
after experiencing a shock.

The preceding reasons urge the consideration of models that are “‘naturally’
dynamic or time varying. Let z(¢) denote the “state’ of an ecosystem at time ¢.
The time scale is arbitrary, but it is convenient to let { = 0 denote the time at
which we begin observing the system. “State’” summarizes whatever character-
istics of the system are of central interest, e.g., population size, the age and
sex distributions of the biomass of several populations, etc. We shall let S
denote the set of all conceivable states; throughout this section, let § be the
set of all real numbers.? Let z, = 2(0) denote the initial state of the ecosystem,
i.e., the state of the system when observations begin.

Persistence.—‘Stability”’ has several connotations. An important one is
moderation in the size of “natural” fluctuations in the graph of the state as a
function of time. We shall use the labels “posterity” for {z(f),# > 0} and
“persistence’’ for a posterity that remains within a given distance of a specified
point. Formally, we say that a posterity is @-persistent about the point x' if

|2 — 2(t)) < ® for allt > 0. 1)

This definition depends on the chosen point ' as well as on the distance ©.
Our concept of ®-persistence, as well asits terminology, isrelated to definitions
found elsewhere. In systems theory, for example, there is a nonstandard

2 Throughout the paper, we shall ignore important mathematical points such as the
extension from the reals with Euclidean distance to general metric spaces, the integrability
or summability of functions, the measurability of functions or sets, the attainment of
infima, and the existence of limits. Our definitions can be generalized to encompass these
considerations.
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Fic. 1.—An example to illustrate @-persistence for idealized moose and wolf
populations.

definition (cf. Schwartz and Friedland 1965) of an equilibrium state being
bounded if there is a neighborhood, surrounding the state, that has the following
property: if the initial state is any state in the neighborhood, then the posterity
will always lie within a finite distance from the equilibrium state. Our definition
of ®-persistence, however, is not predicated on the existence of an equilibrium
state. Terminologically, “persistence’ arises early in Smith (1974). Definitions
there include: “An ecosystem is taxzonomically persistent if the species composing
it remain the same for long periods . . .; it is numerically persistent if the relative
numbers of individuals in different species either remain constant, or return
regularly to the same ratios, for long periods. . . .”

Example 1: If 2(f) = sin £, then the posterity is @-persistent about «’ if and
onlyif @ > 1 + «'.

Example 2: Figure 1 idealizes a posterity of moose biomass on Isle Royale in
Lake Superior. The moose posterity is ®-persistent about ' if and only if
® > max {&' — a,a + 2b — 2'}.

These examples illustrate that a posterity’s persistence (or lack of it) depends
on the location of the idealized state 2’ and on the stringency of the approx-
imating neighborhood. For any comparison state x', a posterity will be ®-
persistent about ' if ® is selected sufficiently large (possibly co). Conversely,
if the posterity is not a constant, then it will fail to be ®-persistent about any
x' if ® is chosen sufficiently small.

If the posterity {x(¢),t > 0} is a record of population size or biomass, then
it is convenient to apply the following altered definition of persistence: the
posterity is O-persistent about x’ if

|z(t) — 2’| < ®-min {x(7):0 < 7 < 0} for all ¢ > 0. (2)

If the population size should drop to zero at some time, then (with this altered
definition) the posterity would not be @-persistent for any @ < oo.

The variant of ®-persistence in (2) used a normalization of 1/min, . ,z(1). A
different normalization may be useful when several different posterities, each
representing population size (or biomass), are being compared. Then the
normalization created by division by the mean population seems appropriate.
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Specifically, instead of (1) or (2), a posterity is said to be @-persistent about x' if

T
lx(t) — 2'| < © - lim lf x(t) dt for all ¢ > 0. (3)
T-w 1T Jo

Recurrence—Another important connotation of “stability” is the repetition
of a previously occupied state. For example, consider a man who revisits a
forest in the BWCA he saw in his childhood. He may be more concerned with
verifying that the kinds of forests he saw as a child have recurred somewhere
in the area than with verifying that the entire forest has remained unchanged
during his absence.

_The basic idea here is that the posterity is sure to revisit a state it has already
occupied. For mathematical purposes, it is convenient to generalize the idea
to the posterity getting arbitrarily close, at some future time, to a state it has
already occupied. Specifically, we say that state x’ is recurrent if for every
0 > 0 and t > O there is a ¢ > 7 such that |z(f) — 2’| < §. This definition is
equivalent to

lim min |z(t) — 2’| = 0. (4)
T t>71
If a state is not recurrent, then we call it fransient. The interval 2’ — 6 <

u < 2’ + 0 is called the J-neighborhood of #’. It follows from the definition
of recurrence that, if a state 2’ is transient, then there is a § > 0 such that the
posterity is never found in the §-neighborhood of #’ past some point in time.
The set S of all states can be partitioned into two sets: the recurrent states Sy
and the transient states S;.2 We define a posterity as recurrent if all states in S
are recurrent; i.e., if § = Sg. For instance, the posterities in examples 1 and 2
above are recurrent with S = {z:|z|] < 1} and 8 = {x:a <z < a + 2b},
respectively.

Example 3: A recurrent process may lack persistence, and a persistent process
may be transient. For example, the posterity () = ¢ sin ¢ with § = (— o0, o)
is recurrent although it is not ®@-persistent about any 2’ for any ® < oo. On the
other hand, this posterity is sure to reiterate every previously visited. state.

Example 4: The posterity z(() = 1 — ¢™" with S = (0, 1) is @-persistent
about 1 for all @ > %, but every state in § is transient, i.e., § = Sy.

Our definition of posterity recurrence is endowed with an element of tautology.
Every posterity for which Sy is nonempty is recurrent if § = Sg; it fails to be
recurrent if Sy is augmented with even one element of S;.

Our definitions of persistence and recurrence are predicated on posterities
of infinite duration, i.e., the domain of the function X(-) is the half line (0, ).
However, many ecosystem models are defined only over finite time horizons.
Persistence seems to be useful for finite-horizon models because often one is
interested in the range of values taken by a posterity of limited length. For-
tunately, our definitions (1), (2), and (3) are applicable to the persistence of
finite-horizon models if “for all ¢ > 0” is interpreted as “for all ¢ in the finite

3 1t follows from the definition of recurrence that Sg is a closed set.
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interval of time for which the posterity is defined.” The notion of recurrence
seems irrelevant for finite-time-horizon models because every state that occurs
even once must occur for a last time.

Perturbation.—The effect of a perturbation is to alter the posterity that would
otherwise have characterized the ecosystem. Let x, denote the initial state of
the unperturbed system whose posterity, we shall assume, has state space
8 = Sz U S;. Let ©, denote the smallest ® > 0 such that the posterity is
O-persistent about z,. It is meaningful to inquire if the ecosystem altered by its
perturbation is “less” recurrent or ‘“less’ persistent. That is, let Si denote the
set of states that are recurrent in the perturbed posterity, and let 87 = S — Sk.
Also, let ©, denote the smallest ® such that the perturbed posterity is ®@-persis-
tent about x,.

We say that the perturbed posterity is less recurrent if Sk is a smaller set than
Sy (or, equivalently, if S is larger than S7). Similarly, we say that the perturbed
posterity is less persistent if ®;, < ©¢ (and more persistent if the reverse in-
equality prevails).

Example 5: A good example is provided by Grand Monadnock (Mount
Monadnock) in New Hampshire (Chamberlain 1968). Until the nineteenth
century, Monadnock’s summit was forested. However, the posterity was
altered by repeated man-made fires. Complete destruction of the organic cover
permitted the residual loose matter near the summit to erode away. Ever since,
the uppermost 500 ft have consisted of open rock ledges covered only by
crustose lichens and, in crevices, low mat-forming plants. Reestablishment of
the forest near the summit seems unlikely in Monadnock’s perturbed posterity.
In fact, some evidence suggests that the timberline has moved downhill since
the nineteenth century. Lichen-covered rock and crevices with mat-forming
plants are the only recurrent state now, but the set of recurrent states would
have been much larger had fires not been set repeatedly. The perturbed process
is less recurrent than the unperturbed process. Moreover, ®, = 0 in the per-
turbed process, i.e., zero is the minimal value of ® for which the perturbed
process is @-persistent about the initial state of lichen-covered rock. In the
unperturbed process, ® > 0 about any initial state. This example illustrates
that a low value of ©®, is not necessarily “good’; the perturbed posterity is
trivially and unfortunately maximally stable in the sense of ®@-persistence.

4. NOTIONS OF STABILITY IN STOCHASTIC MODELS

Posterities often contain unpredictable fluctuations that arise from inherent
variability, errors of observation, incomplete scientific understanding of causal
phenomena, and unanticipated external “shocks” to an ecosystem, e.g., the
weather. Therefore, in place of a deterministic posterity, we now consider the
stochastic process {X(¢),¢ > 0} giving rise to a probability space having
probability measure P(-). Let S denote the set of all states at which the process
could possibly take values, i.e., the “‘sample space’” of X(f).

Absorption.—Absorption is a stochastic analogue of persistence for determin-
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istic posterities. It leads to S being partitioned into mutually exclusive subsets,
one of stochastically persistent states and another of temporary states. Every
text on stochastic processes (e.g., Karlin 1969) discusses absorption in the
context of Markov Chains. Here, however, we do not predicate the notion of
absorption on a Markovian assumption. Formally, a subset Z of S is called an
absorbing set if the process necessarily remains within Z if it ever enters Z (or
if it starts there). Notationally, Z is an absorbing set if

PXt)eZ|X(x)=1}=1 forallt >t >0 and all ¢ € Z.

Example 6: The usual anecdotal account of a pond’s posterity illustrates the
notion of absorption. The pond begins in an oligotrophic condition and evolves
into a eutrophic state. Sediments build up on the bottom and, if environmental
conditions are appropriate, a floating mat develops on the surface. Gradually
the pond fills in and passes through a bog stage, which in turn is gradually
invaded by terrestrial vegetation. Allowing for the occasional incidence of
disease and fire, the filled-in pond will always be found in a state of tundra,
shrub, or forest; such states comprise an absorbing set.

In every stochastic posterity, the set of all states S is itself trivially an
absorbing set. Usually we may delete some elements from such a gross absorbing
set and the reduced set will still be absorbing. We define an absorbing set Z
to be a minimal absorbing set if deletion of further elements from Z destroys
the absorption property, i.e., if Z — K is not an absorbing set for all nonempty
subsets K of Z. If Z = {i} is an absorbing set consisting of a single element,
then ¢ is called an absorbing state. Static stability asserts that the initial state
will absorb the process, with probability = 1, after experiencing a perturbation.

If Z and Z’' are absorbing sets whose intersection is nonempty, then their
intersection Z N Z' is necessarily also an absorbing set. Therefore, two different
minimal absorbing sets are necessarily disjoint, i.e., their intersection is empty.
Let A4 index the minimal absorbing sets so that ¢ € 4 indicates that there is a
minimal absorbing set Z,. We define a state s € S to be temporary if it fails to
lie in any minimal absorbing set, i.e., if

seS -\ 2,
acA

In example 6, the hydrarch succession from pond to forest, all the states in
which the pond holds surface water are temporary. Ordinarily, if a process
begins in a temporary state, then it will eventually gravitate to one of the
minimal absorbing sets. If ¢,° denotes the probability of ultimately entering
Z, when the initial state is s, then

g, = P{lim X(¢) € Z,| S(0) = s}, aeAd, sef.
t—>o0
Of course, if s is not a temporary state, then ¢,® is either 1 or 0 depending on
whether s € Z, or s ¢ Z,, respectively. For every se 8, >,.4¢,° < 1.

Recurrence.—Various stochastic analogues of the deterministic notion of

recurrence are suggested by the theory of Markov processes. However, the
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following definitions are not predicated on a Markovian assumption. They all
concern the times between successive visits to a state or a subset of states.
For any state s and subset K of S let 7T(K, t) denote the time it takes the
process to reach some state in K after departing from state s at time 7; i.e.,

T(K,t) =min {:t > 0 and X(r + t) e K}, X(t) = s.

s

In words, if the process begins in state s at time t so that X(z) = s, then it
takes 7.(K, 7) units of time until the process first occupies some state in K.

It follows from the definition of absorbing set that, if K is an absorbing set
and s € K, then K can surely be reached from s so that

P{T(K, 1) < 0} = 1.

On the other hand, if Z and Z' are disjoint absorbing sets with s € Z and
K < Z’, then K can never be reached from s so that

P{T(K,t) = o0} = 1.

For any state s and set K we define state s to be K-recurrent if the process is
sure to reach set K starting from state s, i.e.,

P{T(K,1) < 0} =1, T > 0.

We observe that state s can fail to be K-recurrent if and only if there is some
chance of never reaching set K from state s, i.e., for some ¢ > 0,

P{I(K,1) < 00} <1< P{T(K,1) = o0} > 0.
A state s is said simply to be recurrent if it is {s}-recurrent, i.e.,

P{T({s}, 1) < o0} =1, T > 0.

Therefore, a recurrent state is visited infinitely often (with probability = 1)
if it i$ ever visited for a first time.

We label a state as being transient if it is not recurrent. Any visit to a transient
state could be the last visit to that state. With probability = 1, there will be
a last visit and only a finite number of visits will occur. Therefore, a state is
transient if and only if it is temporary. This property ties recurrence to absorp-
tion, and it implies that the set of recurrent states can be partitioned into the
minimal absorbing sets.

We should not associate “recurrent” with “good” and “‘transient” with
“bad.” In fact it is easy to generate a simple process having all states transient:
let the stochastic process be discrete in time with X(0), X(1), X(2), ... being
independent and identically distributed as a standard normal random variable.
Transience is a consequence of each X (t) being a continuous random variable.

We generalize the definition of a recurrent state to avoid the preceding
triviality that may arise if S is nondenumerable. It is sufficient to define state
s to be recurrent if s is K-recurrent for all sets K that have positive measure
and contain s.

If state s is K-recurrent, then the process will eventually reach K after
leaving state s. However, we have no idea how long it will take, and, on the
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average, it may take nearly forever. A crude distinction between short-run and
long-run recurrence is offered by the following definitions. If state s is K-
recurrent, then the average value of T(K, 1), denoted E[T,(K, )], is well
defined mathematically but need not be finite in value. State s is defined to be
positive K-recurrent if it is K-recurrent and also E[T(K, 7)] < oo. If s is K-
recurrent but E[T,(K, t)] = oo, then state s is defined to be null K-recurrent.
When K = {s} the labels and notation are simplified to positive recurrent, null
recurrent, and 7(t). We call 7,(t) a recurrence time.

Examples of positive and null recurrence arise in the coin-tossing games of
elementary probability. Let D,, D,,... be independent and identically
distributed random variables with

p=PD =+1}=1-P{D, = -1}
let § = {0,1,2,...}; and let
X+ 1) = [X(¢) + DT,

where the notation (u)* denotes the maximum of the number % and zero. If
p = 3, then every state in S is null recurrent; if 0 < p < 3, then every state
is positive recurrent; and if £ < p < 1, then every state is transient.

Example 7: Positiverecurrent states invite the comparison of the distributions
of their recurrence times. In the BWCA, for example, a state’s mean recurrence
time is generally increased if the interval between successive fires is unnaturally
extended. In this sense, the forest’s stability is decreased by retarding the
advent of fire.

Other kinds of comparisons of recurrence times concern variability. The
objective is to use a variability criterion that permits a partial ordering of the
set of distribution functions of recurrence times. Common criteria include (@)
the variance and (b) the ratio of the standard deviation to the mean. Other
stochastic orderings are useful, as well, and the interested reader is referred to
Bessler and Veinott (1966, sec. 7).

Example 8: It is apparent from figure 1 and anecdotal accounts of Isle
Royale National Park (see Section 6) that moose biomass is more variable than
wolf biomass (even if both are normalized by their respective means) and so is
less stable in this sense.

Our comments in Section 3 concerning finite-horizon models and normaliz-
ation of persistence criteria extend straightforwardly to our definitions for
stochastic models. However, we leave the details to the reader.

Perturbation : stochastic models—Our discussion of perturbation in deter-
ministic models (at the end of Section 3) extends directly to stochastic processes.
For the unperturbed process, let Sy and Sy denote the sets of (stochastically)
recurrent and transient states, respectively; of course, § = Sp U S; and
Sg N Sy is the empty set. Let Sk denote the set of recurrent states in the
perturbed process and let S7 = 8 — Sk. If Si contains fewer states than S,
then we say that the perturbed process is less recurrent than the unperturbed
process.
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5. APPLICATIONS TO THE BOUNDARY WATERS CANOE AREA:
A PROBLEM IN COMMUNITY STRUCTURE

We shall demonstate that the foregoing definitions can be applied usefully
to both theoretical and applied problems in ecology. First we reconsider the
BWCA.

The suppression of fire leads to the development of large spatially homo-
geneous areas. Whether unburned or severely burned, such areas are distinct
from the complex mosaic of different successional stages coexisting on the
presettlement landscape. Heinselman (1973) writes that fire in the BWCA
must be ‘. . . seen as just a perturbation within the system. It was an essential
factor in maintaining the kind of long-term stability and diversity recorded
in the pollen and charcoal diagrams.” We shall attempt to clarify his statement.
The landscape can be viewed as a matrix of points at which some measure of
the ecosystem is made. In the presettlement landscape, this measure would
yield much greater diversity than at present. The presettlement landscape
provided the variety of communities and wildlife that people seem to desire in
a “wilderness.”

“Equilibrium” has no meaning in the BWCA because the forest, without
manipulation, changes slowly with the climate, and we can speak only of its
posterity or trajectory through time, not of its equilibrium. Therefore, in this
context, static stability, i.e., the return to equilibrium following a perturbation,
is meaningless. The specific trajectory of a small area, say 100 m2, is a procession
from fire to lichens and annual herbaceous plants to perennial plants and
shrubs to jack pine-red pine to fire, or else to fir-spruce-birch and eventually
to fire. Heinselman (1973) defines a natural fire rotation as the ‘“‘average number
of years required to burn over and reproduce an area equal to the total area
under consideration.”” This is nearly equivalent to the mean recurrence time of
the jack pine-red pine state. It seems-that the intentional suppression of fire
induces a posterity whose mean recurrence times are longer than in the pre-
settlement forest. Indeed, there may be a risk that the permanent removal of
fire, or the occurrence of less frequent but more severe fires, causes some
otherwise recurrent states to be transient. In Heinselman’s opinion, the jack
pine-red pine mean recurrence time is 100 yr for the entire area and probably
20-60 yr for any local area.

For us, the recurrence of desirable states has greater priority than resting in a
single equilibrium state. This preference contrasts sharply with the implicit
arguments of ecologists earlier in this century that recurrence required an
equilibrium. Further, we would suggest that maximizing the size of the state
space which is recurrent (and secondarily minimizing mean recurrence times of
“desirable” states) is equivalent to ensuring the aesthetically desirable wilder-
ness status—an ecosystem having a maximum structural (species) diversity.

A Decision Model

The preceding considerations suggest a positive management approach to
the role of fire in determining structural diversity in a forest. The operational



STABILITY IN TIME-VARYING ECOSYSTEMS 637

question is, Under what conditions should fires be permitted to burn (or be
started deliberately!) ¢ We shall describe a simplified model to aid in answering
this question. A more general model and its detailed mathematical analysis
are presented elsewhere (Sobel 1974). After the simplified model and its most
important properties are described, we shall relate those properties to the
notions of stability presented in Sections 3 and 4.

We assume that, at a given time, the species composition of the forest falls
into exactly one classification among a number of categories that are at most
denumerable, i.e., there are states 0,1,2,.... Let X(¢), t =0,1,2,... be
the stochastic process of states during successive years. The structure and
decisions that govern the X(-) process are described below.

Suppose that, during a given year, the forest is in state ¢, and k£ yr have
elapsed since the last fire occurred (either accidentally or deliberately set),
k=0,1,2,.... If the manager decides to start a fire (equivalently, to let a
“natural” fire burn) during the given year, then the forest is immediately (in
zero time) transformed to forest state j with probability m;; (m;; > 0 for all
1,j and 372 m;; = 1 for all ), and k£ = 0 yr will have passed since a fire. If
the manager decides not to start a fire during the given year, then there is some
risk that an accidental fire may occur. Let f denote the probability that fire
accidentally occurs during a year. If an accidental fire does occur when the
forest is in state 4, and & yr have elapsed since the most recent fire, then next
year’s state is determined according to the probability vector [g;;(k)], where
q;;(k) = 0 for 4,45,k =0,1,..., and 3724 q;;(k) =1 for 4, k = 0,1,.... If
an accidental fire does nof occur, then next year’s state is determined according
to the probability vector p,;, where p;; > O fori,j = 0,1,...,and 3720 p;; =
lforallz =0,1,....

Some states are more desirable than others, and the objective is, roughly, to
maximize the proportion of years (proportion of a large areal forest) during
which the forest state is particularly desirable. Suppose that the states have
been labeled so that there is an integer d such that {¢:¢ > d} is the set of
“particularly desirable” states. Let

ri) = {1 ifi > d,

0 ifi<d, fori =0,1,....

During the first 7' years, the proportion of years in which the forest is in
particularly desirable states is

1 T

— r[X(8)]. 5

7 X X0 ®)
This leads us to consider the criterion of maximizing the long-run average value
of (5), or

max lim £ {li ZT: fr[X(t)]} ) (6)

T—o0 t=1

where E denotes expectation (in the sense of the mean value of a random
variable).
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(@@ POLICY A
@——-)ﬁ) POLICY B

Fi1c. 2.—State transitions in example 9

The maximization in (6) is with respect to all rules for deciding when to start
a fire. It is intuitive that attention can be confined to rules of the following kind :

For each state ¢ there is an integer b(¢) (possibly + c0)
such that deliberate burning occurs if and only if (7)
b(i) or more years have elapsed since the last fire.

Under the following assumptions it has been shown (Sobel 1974) that there is
a rule with the structure of (7) that attains the maximum in (6): for all generic
states 7 and ¢ and generic ages k, the probabilities satisfy

Y ik + 1) < ¥ qik) < Y qi0q,(R), for all ¢, &, c; (8a)

j=c jizc j=c
Y vk + 1) < ¥ pyk) < Y pigy k), foralld kc;  (8b)
Jjzc jzc Jj=c
Yomy <Y Mg for all 4, c. (8c)
j=c jizc

The assumptions in (8) have the following interpretation. The left inequalities
in (8a) and (8b) assert that transitions to less favorable states will become more
likely as the number of years since the last fire increases. Then (8c) and the
right inequalities in (8a) and (8b) imply that transitions to more favorable
states are more likely from favorable states than from unfavorable states. These
assumptions seem reasonable to us in most contexts.

Example 9: The following trivial numerical example satisfies (8) and illustrates
the superiority in some contexts of a policy that advocates deliberate burning
in some states. Suppose that there are three states, {3} is the set of desirable
states, and a “natural’ fire always occurs, so that f = 1 (the reader is reminded
that f is the probability of accidental fire) and {p,;;(k)} is irrelevant. We set
values of

712(k) = qo3(k) = g51(k) = myy; = my; = Mgy = 1, for all &,

with other m;;’s and ¢;;(k)’s equal to zero. The objective is (6), namely, to occupy
state 3 as often as possible.

It is clearly suboptimal to burn when in states 1 and 2. Therefore, we compare
policy A of not burning when in state 3 with policy B of burning when in state 3;
both policies stipulate not burning in states 1 and 2. The state transitions
generated by 4 and B are illustrated in figure 2.

Policy A causes state 3 to be occupied one-third of the time whereas policy B
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causes it to be occupied one-half of the time. Therefore, in the sense of criterion
(6), B is superior to 4, and a fire ought to be set when the state is state 3.

6. APPLICATIONS TO MODELS OF PREDATOR-PREY INTERACTION

From the time of the first publication of the theoretical models of Lotka and
Volterra, predator-prey interactions have intrigued many biologists. Many
papers have discussed whether predator-prey interactions lead to stability of
both populations. It has frequently been argued that predation leads to some
kind of stability of the prey population not inherent in the dynamics of the prey
population alone. While there have been many theoretical treatments of this
problem, there have been few well-documented examples.

The interaction between wolves and moose at Isle Royale National Park,
Michigan, provides one of the few comparatively well documented cases of real
predator-prey interactions for large mammals in an undisturbed habitat
(Mech 1966). Moose first appeared on the island in the early 1900s. In the absence
of their only significant natural predator, the timber wolf, and in the presence
of an abundance of preferred food plants, the moose population increased
rapidly. Within 15 yr the browsing impact on the vegetation was striking, and
moose die-offs, predicted by Murie (1934), occurred in the early 1930s.

Forest regeneration followed a major fire in 1936 and provided a new large
supply of food for the moose. A second rapid population increase was followed
in the mid-1940s by die-offs and marked suppression of forest growth (Krefting
1951). Wolves reached the island in 1947-1948; their population increased
within a few years to an average of 23, a value which seemed to be maintained
through the early 1970s. Also, until the early 1970s, wolf predation seemed to
maintain the moose herd at a level below catastrophic die-offs but at a density
higher than recorded elsewhere. During the 1960s the effect of the predator
seemed to stabilize the population of the prey, and both moose and wolves
seemed to exist in an apparent equilibrium. More recently, browsing impact
has increased, and both moose and wolf populations appear to have increased.

It should be noted that estimates of population densities for large mammals
in forested areas are notoriously inaccurate. Although the impact of the moose
on the vegetation during the 1960s seemed constant, successive estimates of
the moose population gave increasingly large numbers. However, it is unclear
whether this apparent growth resulted from improved accuracy in survey
techniques or from an increase in moose population.

Although long-term patterns in the wolf and moose populations cannot yet
be ascertained from Isle Royale data, the observed history provides the
following insights: (1) the moose population without predation experienced
wide fluctuations; (2) predation damped these fluctuations, at least in the sense
of increasing the time between maximum and minimum levels (it may also
have damped them in the sense of decreasing the range of population size); and
(3) predation does not seem to have brought the moose population to a fixed
equilibrium.

Predator-prey interactions have often been modeled with the Lotka-Volterra
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equations, and the ensuing discussions typically invoke the concept of static
stability. The above examination of real predator-prey interactions at Isle
Royale suggests that it is unproductive to interpret moose-wolf interactions
with static stability. Instead, we shall apply the notions of recurrence and
absorption to a variant of the Lotka-Volterra equations.

Markovian Predator-Prey Models

The Lotka-Volterra equations, as follows, comprise the classical model of
predator-prey interaction:

% = w(®pm(t) — b);
dmi(t) ®)
e = m(t)la — aw(?)].

The quantity w(t) is the size of the predator population of “wolves,” and m(¢)
is the size of the prey population of “moose,” both at time ¢ > 0. The initial
populations m(0) and w(0) are specified at the outset. We shall consider a
discrete-time analogue of (9) in which the states, i.e., the pairs [m(t), w(t)],
also are discretized. Let X(0), X(1),... comprise a discrete-time stochastic
process, with

X(t) = [M(), W),

specifying the random sizes of the moose population M (t) and the wolf popula-
tion W(¢). The set of states § is assumed to be all pairs of nonnegative integers
(m, w).

We assume that X(0), X(1), X(2),... is a time-homogeneous Markov Chain,
namely, that its future behavior is stochastically independent of its past history
except through its present state.* Therefore, the probabilistic structure is
entirely specified by X(0) and the transition probabilities

Py = P{X(1) = y| X(0) = «},

defined for all # € S and y € S. The transition probabilities satisfy p,, > 0 and
Y p,=1 - forallzes. (10)

y€ES

To return to the moose and wolves, our first model is a simple generalization
of Becker’s (1973) Model 2. We assume

Pmwy,mwy T Pomw),(m+1,w) T Pim,wy,(m=1,w) 1)
+ Ponwy,mw+1) T Py, onw-1) = Lo

for all (m, w) with m and w being positive integers. By analogy with the Lotka-
Volterra equations in (9), let a, a, , and b be positive numbers and y a non-

4 The reader is referred to Karlin (1969) for a careful definition of a Markov Chain.
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Fia. 3.—Transitions between states in the first model of moose-wolf interaction

negative number such that the transition probabilities whenm > 0 and w > 0
are given by

a
a+a+pf+b+y’

Pm,wy,(m+1,w) =

o
a+a+pf+b+y

Pm,wy,(m—1,w) =

B
Pom,w ,(m,w = ) (12)
ot D Tt e+ B+ b+ y

b
a+a+B+b+y

Pim,wy,(mw=-1) =

Y
a+a+pf+b+y’

Pim,wy,(mw) =

which satisfies (11). We note that p, . m,w) 1S zero or positive according to
whether y is zero or positive. It is assumed that p( 0y,0,00 = Ls Pm,0yom+1,0) = 1
if m > 0, and p,,),0,w—1y = 1 if w > 0. Therefore, (0, 0) is an absorbing
state and {(m, 0):m > 0} and {(0, w): w > 0} are sets of transient states.
Is any state except (0, 0) recurrent ?

The transitions having positive probabilities are exhibited in figure 3. It
follows from the theory of Markov Chains having denumerably many states
(Karlin 1969) that, with probability = 1, whatever the initial state X(0), the
process will behave in one of the following ways: (1) it will reach the (0, w)
axis and thereafter be absorbed at (0, 0); (2) it will reach the (m, 0) axis and
thereafter march out towards (co0, 0); or (3) it will drift out toward (o0, 00). In
particular, there is zero probability of persisting at positive finite numbers of either
or both populations. That is, for every subset of S, with probability = 1 there
is a finite time ¢ (finite but perhaps very large), such that either the process is
at (0, 0) or it will never again visit that subset. Equivalently, every state
(m, w) for which 0 < mw < oo is temporary and transient!

Our second predator-prey model embodies the assumption that resource
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F1a. 4.—Transitions between states in the model of moose-wolf interaction
with a resource barrier.

limitations preclude unboundedly large population sizes. It will lead us to
conclude (for apparently new reasons) that the Lotka-Volterra equations have
little empirical value. As a consequence of resource limitations, we assume the
existence of an impenetrable ‘‘resource barrier’” B as depicted in figure 4. This
is equivalent to truncating S to a set with only finitely many pairs (m, w). The
resource barrier includes some of these pairs so that B = S. If (m, w) e S8 ~
(B U {(0, 0)}), then (4) is assumed to hold, with all four probabilities being
positive; again p ),0,00 = 1. If (m, w) € B, then § does not contain at least
one of the pairs (m + 1, w) and (m, w + 1). So we assume (12) with positive
probabilities for (m, w) € B, except that a, =0 if (m + 1, w) ¢S, and
Buw = 0if (m, w + 1) ¢ S. It follows from the theory of Markov Chains having
finite sets of states that all states (m, w) € § with m + w > 0 are temporary
and transient because {(0, 0)} is the only minimal absorbing set.’ Therefore,
for any initial state X(0), the process will (with probability = 1) be absorbed at
(0, 0) within a finite number of transitions (finite but perhaps very large). Again,
as in the first model, there is zero probability of persisting at positive population
levels. This unpleasant conclusion casts doubt not only on the empirical value
of our models but also, in our opinion, on the empirical value of the Lotka-
Volterra equations.

To complete the perturbations of the stochastic predator-prey model, suppose
that the model having the resource barrier is changed as follows. Let
Pe0,0y,(1,00 T P(0,0y,0,00 = L, With peg o) 1 oy > 0, so that there is positive
probability of regenerating the moose population if it becomes extinct. Other-
wise, suppose that the resource barrier model is unaltered. Then every state in
S is recurrent and S is the only minimal absorbing set.

7. APPLICATIONS TO FUNCTIONAL PROPERTIES OF ECOSYSTEMS

Thus far we have dealt only with questions concerning structural properties
of ecosystems. There is no a priori reason to believe that the same concepts of

5 An exception in some cases, exemplified by 3, (0) in fig. 4, is that (m, 0) may be an
absorbing state too, where m is the largest m such that (m, 0) € B.
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F1a. 5.—Comparison of Berry Pond (Whitehead et al. 1973) with classical lake
succession (Likens and Davis, in press).

stability are applicable to both structural and functional properties of eco-
systems. Suppose, for example, that our concern is with the “stability’’ of an
ecosystem’s productivity, or its loss of some ion, or the rate of cycling of that
ion. What concepts of stability are appropriate for these questions ?

A convenient example to examine such problems is the postglacial history of
Berry Pond, Massachusetts, as described by Whitehead et al. (1973). This is a
small (3.9-hectare) pond lying in a forested watershed of approximately 28
hectares and having a number of species in common with the BWCA.

The history of Berry Pond contradicts the classic hypothetical pattern of
pond succession. Rather than a unidirectional trend from oligotrophic to
eutrophic conditions, and from lower to higher production, Berry Pond has
cycled back and forth. Productivity reached a maximum 13,000-8,000 yr ago,
then declined to a minimum 7,000-5,000 yr ago, then increased to a higher
maximum and then declined again between 5,000 and 3,800 yr ago. According
to Whitehead et al. (1973): ‘. . . The initial period of increasing productivity
coincided with the development of coniferous forests (first spruce, then pine)
in the region, [and] the decline with the establishment of northern hardwood
forests. The second cycle of eutrophication coincided with a sharp decline of
hemlock; inereases of birch, oak, beech and other hardwoods; and a significant
acceleration in the rate of delivery of leaf cuticle fragments to the pond.”

There are three points of interest in this history. First, the pond seems to
have gone back and forth between oligotrophic and eutrophic stages. Second,
the state of the pond depended on the state of the forested watershed, par-
ticularly on functional properties of the forest. Figure 5 illustrates the difference
between the classical pattern of pond succession (Likens and Davis, in press)
and the history of Berry Pond. :

To put the problem in practical terms, if one wished to preserve the oligo-
trophic character of the pond, one would have to require that the loss of
nutrients from the watershed remain below some maximum, and one would be
interested only indirectly in the structural properties of the forest. The concern
with forest structure would arise in this case only because the structure appeared
to affect the functional properties, i.e., the loss of nutrients.

Such an argument is presented by Whitehead et al. (1973), who assert that,
although boreal coniferous forests are generally lower in productivity, biomass,
and rates of litter decomposition than northern hardwood forests, the boreal
forests have a lower capacity to retain nutrients. Also, the boreal forests produce
an acid litter that accentuates nutrient loss to streams and possibly have more
rapid nitrification.
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The history’s third point of interest is that local states of the forest become
important because the watershed for Berry Pond is small. A fire or storm that
would be small in comparison to the size of the BWCA or Isle Royale National
Park could completely alter the state of Berry Pond’s 28-hectare watershed.
It could produce extreme short-term changes even though the average, long-
term trajectory of the pond might seem to remain in narrow limits.

This leads us to an important distinction in regard to the stability of eco-
systems. Perhaps local and global stability of ecosystems, in both a temporal
and spatial sense, cannot be achieved together. In fact, short-term stability
may lead to long-term instability. For example, suppose that the forested
watershed of Berry Pond had the same relation to fire as the BWCA forests so
that the severity of a fire tended to increase with the time since the last fire.
Then an attempt to ensure that the short-term trajectory of Berry Pond’s
watershed would remain within a small set of states might decrease the prob-
ability that, in the long-run, the pond and its watershed would remain within a
desired group of states.

The graph of the concentration of an ion in a hypothetical pond is shown in
figure 5 (in comparison with the same graph for Berry Pond). After an appro-
priate change of scale it could be fitted by the posterity z(f) = 1 — e™* with
state set § = (0, 1). As we observed in example 4, this posterity is @-persistent
about 1 for all @ > %, but every state in § is transient, so S = S;.

The foregoing discussion of Berry Pond concerned functional properties of
an ecosystem. Yet it utilized the notions of persistence and recurrence that we
applied earlier to examine structural properties. Therefore, it appears that the
same stability concepts, namely, persistence and recurrence, are applicable to
both structural and functional properties of ecosystems.

8. CONCLUSIONS

Our initial objective was to formalize some notions suggested by connotations
of “stability.” Then we wished to see if the usefulness of these notions depended
on the type of ecosystem process being discussed: population dynamics,
ecosystem structure, or functional properties. A review of Sections 5-8 supports
three tentative conclusions:

1. Several different stability notions are applicable to each type of ecosystem
process, and they may lead to different insights.

2. A single notion of stability is applicable to the several types of ecosystem
processes.

3. The concept of static stability frequently is inappropriate for the analysis
of ecosystems, and, in such instances, alternative tractable notions of stability
are available.

What do these conclusions signify for ecologists ¢ First, they imply that data
collected during research in the field and laboratory should be sufficiently
varied to evaluate several stability notions. Second, theoretical analyses of
stability, particularly its dependence on ecosystem complexity, should be
broadened to include notions of stability besides the definition of static stability
borrowed from statistical mechanics.
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